Skip to Content
Merck
CN

[Study on the vibrational spectra of 3,5-dimethoxybenzyl alcohol].

Guang pu xue yu guang pu fen xi = Guang pu (2010-09-11)
Yun-xia Han, Ling-feng Shi, Li-gang Han, Ya-ping Tao, Yu-jun Mo
ABSTRACT

3,5-dimethoxybenzyl alcohol (L1 OH) is a kind of important pharmaceutical intermediate and it is also the starting material of a family of dendrimer LnOH (integer n means the layers of "branch"). A number of articles reported the structure and properties of the L1 OH. However, its molecular vibrational spectra have not been reported up to date. Study of vibrational spectra on L1 OH at the molecular level can provide new information, which is significant for the in-depth study of related molecules of drug and the dendrimer. Recent studies indicated a morphology effect on the light-harvesting functions of dendritic macromolecules. In the present report, the Raman and FTIR spectra of 3,5-dimethoxybenzyl alcohol were measured experimentally. And the density functional theory (DFT) method (B3LYP/6-311G(d,p)) were used to calculate the equilibrium geometry and vibration frequencies of L1 OH. The results showed that the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis. Thereafter the authors got a detail assignment of the vibrational frequencies for L1 OH for the first time. Also, the results showed that the DFT is really a useful method in the study of molecular vibrational spectra.