- Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin.
Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin.
Examination of electron transfer and proton transfer reactions of lumiflavin and proton transfer reactions of the lumiflavin radical anion by Fourier transform ion cyclotron resonance mass spectrometry is described. From the equilibrium constant determined for electron transfer between 1,4-naphthoquinone and lumiflavin the electron affinity of lumiflavin is deduced to be 1.86 ± 0.1 eV. Measurements of the rate constants and efficiencies for proton transfer reactions indicate that the proton affinity of the lumiflavin radical anion is between that of difluoroacetate (331.0 kcal/mol) and p-formyl-phenoxide (333.0 kcal/mol). Combining the electron affinity of lumiflavin with the proton affinity of the lumiflavin radical anion gives a lumiflavin hydrogen atom affinity of 59.7 ± 2.2 kcal/mol. The ΔG298 deduced from these results for adding an H atom to gas phase lumiflavin, 52.1 ± 2.2 kcal/mol, is in good agreement with ΔG298 for adding an H atom to aqueous lumiflavin from electrochemical measurements in the literature, 51.0 kcal/mol, and that from M06-L density functional calculations in the literature, 51.2 kcal/mol, suggesting little, if any, solvent effect on the H atom addition. The proton affinity of lumiflavin deduced from the equilibrium constant for the proton transfer reaction between lumiflavin and 2-picoline is 227.3 ± 2.0 kcal mol(-1). Density functional theory calculations on isomers of protonated lumiflavin provide a basis for assigning the most probable site of protonation as position 1 on the isoalloxazine ring and for estimating the ionization potentials of lumiflavin neutral radicals.