- White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer.
White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer.
The 'Mediterranean diet', a diet rich in cereals, fruit and vegetables, has been associated with lowering the risk of a variety of cancers of the digestive tract and the bladder. In a previous study, we showed that the high phenolic content these dietary components produce in the urine could be associated with higher antimutagenic properties of the urine and lower arylamine-DNA adducts in exfoliated bladder cells. We have conducted a case-control study on 162 bladder cancer patients and 104 hospital controls. Total aromatic DNA adducts were measured in white blood cells (WBC) of all subjects by (32)P-post-labelling. Genetically based metabolic polymorphisms were analysed by PCR-RFLP (NAT2, GSTM1, GSTT1, GSTP1, COMT and NQO1). All subjects were interviewed about their tobacco use, dietary habits and other risk factors. The odds ratio (OR) for the risk of bladder cancer according to the presence/absence of WBC DNA adducts (detection limit 0.1 RALx10(8)) was 3.7 [95% confidence interval (CI) 2.2-6.3] and a dose-response relationship with levels of adducts was apparent. The association between case/control status and the presence of WBC DNA adducts was significantly stronger in the subjects who consumed fewer portions of fruit or vegetables per day (OR 7.80, 95% CI 3.0-20.30 for 0-1 portions of vegetables) than in the heavy consumers (OR 4.98 for consumers of 2 portions daily, OR 1.97 for consumers of > or =3 portions; similar but lower estimates were found for the intake of fruit). No association was noticed between tobacco smoking and WBC DNA adducts. Only NAT-2, among the several genotypes considered, was associated in a statistically significant way with the risk of bladder cancer (OR 1.72, 95% CI 1.03-2.87) and with the levels of WBC DNA adducts. Our report suggests that fruit and vegetables could protect against bladder cancer by inhibiting the formation of DNA adducts.