Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells.

Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells.

Journal of experimental botany (2001-04-03)
S Davletova, T Mészáros, P Miskolczi, A Oberschall, K Török, Z Magyar, D Dudits, M Deák
ABSTRACT

A calmodulin like domain protein kinase (CPK) homologue was identified in alfalfa and termed MsCPK3. The full-length sequence of cDNA encoded a 535 amino acid polypeptide with a molecular weight of 60.2 kDa. The deduced amino acid sequence showed all the conserved motifs that define other members of this kinase family, such as serine-threonine kinase domain, a junction region and four potential Ca2+ -binding EF sites. The recombinant MsCPK3 protein purified from E. coli was activated by Ca2+ and inhibited by calmodulin antagonist (W-7) in in vitro phosphorylation assays. The expression of MsCPK3 gene increased in the early phase of the 2,4-D induced alfalfa somatic embryogenesis. Heat shock also activated this gene while kinetin, ABA and NaCl treatment did not result in MsCPK3 mRNA accumulation. The data presented suggest that the new alfalfa CPK differs in stress responses from the previously described homologues and in its potential involvement in hormone and stress-activated reprogramming of developmental pathways during somatic embryogenesis.