- Mutagenic activation of aromatic amines by molluscs as a biomarker of marine pollution.
Mutagenic activation of aromatic amines by molluscs as a biomarker of marine pollution.
Mutagenic activation of arylamines by mollusc S9 fractions was evaluated as a biomarker for marine pollution. Two bivalve species were used as bioindicators, the common mussel (Mytilus edulis) and the striped venus (Chameleo gallina). A strain of Salmonella typhimurium overproducing O-acetyltransferase was used as indicator of mutagenicity. Mussels from an area of the North Atlantic Spanish zone that was exposed to an accidental crude oil spill were compared to bivalves from a reference area. C. gallina samples were from low polluted and highly polluted areas of the South Atlantic Spanish littoral. The promutagen 2-aminoanthracene (2-AA) was activated to mutagenic derivative(s) by S9 fractions from both C. gallina and M. edulis. Animals from contaminated sites showed higher arylamine activation capabilities than reference animals. This was further correlated with the mutagenic activities of corresponding cyclopentone-dichloromethane animal extracts. 2-AA activation by mollusc S9 was potentiated by alpha-naphthoflavone (ANF), known to inhibit PAH-inducible CYP1A cytochromes from vertebrates, but inhibited by methimazole (MZ), a substrate of the flavin monooxygenase (FMO) system. 2-AA-activating enzymes were mainly cytosolic; this localization clearly suggests that such activity could be attributed to soluble enzymes, different from the CYP1A or FMO systems. In conclusion, mutagenic activation of arylamines by mollusc S9, using as indicator a strain of Salmonella typhimurium that overproduces O-acetyltransferase, could be a reliable biomarker for marine pollution.