Skip to Content
Merck
CN
  • Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water.

Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water.

Applied and environmental microbiology (1985-04-01)
N J Novick, M Alexander
ABSTRACT

Low concentrations of propachlor (2-chloro-N-isopropylacetanilide) and alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] were not mineralized, cycloate (S-ethyl-N-ethylthiocyclohexanecarbamate) was slowly or not mineralized, and aniline and cyclohexylamine were readily mineralized in sewage and lake water. Propachlor, alachlor, and cycloate were extensively metabolized, but the products were organic. Little conversion of propachlor and alachlor was evident in sterilized sewage or lake water. The cometabolism of propachlor was essentially linear with time in lake water and was well fit by zero-order kinetics in short periods and by first-order kinetics in longer periods in sewage. The rate of cometabolism in sewage was directly proportional to propachlor concentration at levels from 63 pg/ml to more than 100 ng/ml. Glucose but not aniline increased the yield of products formed during propachlor cometabolism in sewage. No microorganism able to use propachlor as a sole source of carbon and energy was isolated, but bacteria isolated from sewage and lake water metabolized this chemical. During the metabolism of this herbicide by two of the bacteria, none of the carbon was assimilated. Our data indicate that cometabolism of these pesticides takes place at concentrations of synthetic compounds that commonly occur in natural waters.

MATERIALS
Product Number
Brand
Product Description

Supelco
Cycloate, PESTANAL®, analytical standard