- Fitness costs of an insecticide resistance and their population dynamical consequences in the oriental fruit fly.
Fitness costs of an insecticide resistance and their population dynamical consequences in the oriental fruit fly.
Naled is a commonly used insecticide for controlling populations of the oriental fruit fly, Bactrocera dorsalis (Hendel), in Taiwan and other countries. B. dorsalis has developed resistance to the insecticide, and the resistance management is an important issue. Ecological effects (e.g., fitness costs) of the resistance, when fully understood, can be used for the resistance management. This study examined the effects of the insecticide resistance on important life history traits (i.e., survival rates, stage durations, and fecundity) of the oriental fruit fly by comparing the traits of insecticide resistant individuals and susceptible individuals. Population dynamical properties were also examined using a stage-structured matrix model that was parameterized with the empirical data. The results revealed that susceptible individuals had shorter stage durations (e.g., grew faster) and reproduced more than resistant individuals. The average longevity of sexually mature susceptible adults was longer than that of sexually mature resistant adults. The matrix population model predicted that a population of the susceptible individuals would grow faster than a population of the resistant individuals in the absence of the insecticide. The sensitivity analysis of the model suggests that the sexually immature adult stage is a good candidate for controlling B. dorsalis populations.