Skip to Content
Merck
CN
  • Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.

Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.

Nano letters (2005-05-12)
Randy J Ellingson, Matthew C Beard, Justin C Johnson, Pingrong Yu, Olga I Micic, Arthur J Nozik, Andrew Shabaev, Alexander L Efros
ABSTRACT

We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields of 300% indicate the creation, on average, of three excitons per absorbed photon for PbSe QDs at photon energies that are four times the QD energy gap. Results indicate that the threshold photon energy for MEG in QDs is twice the lowest exciton absorption energy. We find that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs, and we also introduce a new model for MEG based on the coherent superposition of multiple excitonic states.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
PbS core-type quantum dots, oleic acid coated, fluorescence λem 1200 nm, 10 mg/mL in toluene
Sigma-Aldrich
PbS core-type quantum dots, oleic acid coated, fluorescence λem 1400 nm, 10 mg/mL in toluene
Sigma-Aldrich
PbS core-type quantum dots, oleic acid coated, fluorescence λem 1000 nm, 10 mg/mL in toluene
Sigma-Aldrich
PbS core-type quantum dots, oleic acid coated, fluorescence λem 1600 nm, 10 mg/mL in toluene