Skip to Content
Merck
CN
  • Two genetically distinct pathways for transcriptional regulation of anaerobic gene expression in Salmonella typhimurium.

Two genetically distinct pathways for transcriptional regulation of anaerobic gene expression in Salmonella typhimurium.

Journal of bacteriology (1986-10-01)
D J Jamieson, C F Higgins
ABSTRACT

Expression of the tripeptide permease gene tppB is anaerobically induced. This induction is independent of the fnr (oxrA) gene product, which is known to be required for the anaerobic induction of several respiratory enzymes. We isolated, characterized, and mapped mutations in two genes, oxrC and tppR, which prevent the anaerobic induction of tppB expression. Mutations in oxrC were highly pleiotropic, preventing the anaerobic expression of the formate dehydrogenase component of formate hydrogen lyase (fhl), a tripeptidase (pepT), and two of the three known hydrogenase isoenzymes (hydrogenases 1 and 3). On the other hand, expression of nitrate reductase, fumarate reductase, and a number of other fnr (oxrA)-dependent enzymes was not affected by mutations in oxrC. Thus, there appeared to be at least two distinct classes of anaerobically induced genes, those which required fnr for their expression and those which required oxrC. It seems that fnr-dependent enzymes perform primarily respiratory functions, whereas oxrC-dependent enzymes served fermentative or biosynthetic roles. We found the primary defect of oxrC mutants to be a deficiency in phosphoglucose isomerase activity, implying that a product of glycolysis functions as an anaerobic regulatory signal. Mutations in tppR were specific for tppB and did not affect expression of other oxrC-dependent genes. However, tppR did exhibit phenotypes other than the regulation of tppB. Both oxrC and tppR mutants were hypersensitive to the toxic NAD analog 6-aminonicotinic acid. This suggests that oxrC and tppR may play a role in the regulation of NAD biosynthesis or, alternatively, that NAD or a related nucleotide serves as the anaerobic signal for oxrC-dependent enzymes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
6-Aminopyridine-3-carboxylic acid, 97%