Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN
  • Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor.

Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor.

Biochemistry (1998-11-18)
X Zhai, H Beckmann, H M Jantzen, J M Essigmann
ABSTRACT

Several eukaryotic cellular proteins recognize DNA modified by the anticancer drug cisplatin (cis-diamminedichloroplatinum(II) or cis-DDP); among these proteins is a class of DNA-binding molecules containing the HMG (high-mobility group) box DNA recognition motif. We have previously reported the extraordinarily high binding activity to cisplatin adducts by human upstream binding factor (hUBF), an HMG box containing transcription factor that stimulates ribosomal RNA synthesis (Treiber et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 5672-5676). In the present study, we discovered that (1) hUBF interacted selectively with DNA lesions formed by therapeutically effective platinum compounds [Pt(en)Cl2] and [Pt(dach)Cl2], in addition to the lesions formed by cis-DDP, suggesting a possible association with their anticancer effect; (2) multiple HMG boxes contributed additively to the hUBF-adduct interaction, providing a possible explanation for the unusually high affinity of hUBF for cis-DDP adducts as compared to the lower affinities of other HMG box proteins; and (3) ribosomal RNA transcription in a reconstituted system is specifically inhibited in the presence of cis-DDP adducts. In this third experiment, a ratio of adducts/promoter of approximately 4:1 completely abolished the transcription activated by hUBF. Taken together, these data lend support to the view that transcription factors involved in cellular growth regulation, such as ribosomal RNA transcription, may be hijacked by cis-DDP adducts resulting in functional inhibition.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dichloro(1,2-diaminocyclohexane)platinum(II)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
1 kit
Please contact Customer Service for Availability
New, lower price on this item!
CN¥2,906.39