Skip to Content
Merck
CN
  • Alpha-fucosidase-ganglioside interactions. Action of alpha-L-fucosidase from the hepatopancreas of Octopus vulgaris on a fucose-containing ganglioside (Fuc-GM1).

Alpha-fucosidase-ganglioside interactions. Action of alpha-L-fucosidase from the hepatopancreas of Octopus vulgaris on a fucose-containing ganglioside (Fuc-GM1).

The Biochemical journal (1985-08-01)
M Masserini, A Giuliani, B Venerando, A Fiorilli, A D'Aniello, G Tettamanti
ABSTRACT

alpha-L-Fucosidase, prepared in highly purified form (Mr 70 000-74 000) from Octopus hepatopancreas, was able to hydrolyse a fucose-containing ganglioside, namely Fuc-GM1 (II3NeuAc,IV2Fuc-GgOse4-Cer). The enzyme showed an irregular kinetic behaviour (v/[S] and v/[E] relationships following sigmoidal curves) when working on micellar Fuc-GM1 (Mr of the micelle 500 000), but obeyed regular hyperbolic kinetics when acting on low-Mr substances. It was observed that, on incubation with micellar Fuc-GM1 under the conditions used for the enzyme assay, Octopus alpha-L-fucosidase produced a ganglioside-enzyme complex that was catalytically inactive. This complex had an Mr exceeding 500 000 and a ganglioside/protein ratio of 4:1 (w/w), which is consistent with a stoichiometric combination of one ganglioside micelle with two enzyme molecules. Inactivation of alpha-L-fucosidase by formation of the corresponding complexes was also obtained with micellar gangliosides GM1 (II3NeuAc-GgOse4-Cer), GD1a (II3NeuAc,IV3NeuAc-GgOse4-Cer) and GT1b [II3(NeuAc)2,IV3-NeuAc-GgOse4-Cer], which are not substrates for the enzyme, indicating that the ganglioside micelles per se act as enzyme inhibitors. However, alpha-L-fucosidase easily forms a Fuc-GM1-alpha-L-fucosidase complex, displaying regular Michaelis-Menten kinetics. Therefore the anomalous behaviour exhibited by alpha-L-fucosidase on micellar Fuc-GM1 is likely due to formation of the complex, which separates the fucosyl linkage from the active site of the complexed enzyme, but makes it available to the enzyme in the free form.