Skip to Content
Merck
CN
  • Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia.

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia.

Nature genetics (2013-04-30)
Olivo Miotto, Jacob Almagro-Garcia, Magnus Manske, Bronwyn Macinnis, Susana Campino, Kirk A Rockett, Chanaki Amaratunga, Pharath Lim, Seila Suon, Sokunthea Sreng, Jennifer M Anderson, Socheat Duong, Chea Nguon, Char Meng Chuor, David Saunders, Youry Se, Chantap Lon, Mark M Fukuda, Lucas Amenga-Etego, Abraham V O Hodgson, Victor Asoala, Mallika Imwong, Shannon Takala-Harrison, François Nosten, Xin-Zhuan Su, Pascal Ringwald, Frédéric Ariey, Christiane Dolecek, Tran Tinh Hien, Maciej F Boni, Cao Quang Thai, Alfred Amambua-Ngwa, David J Conway, Abdoulaye A Djimdé, Ogobara K Doumbo, Issaka Zongo, Jean-Bosco Ouedraogo, Daniel Alcock, Eleanor Drury, Sarah Auburn, Oliver Koch, Mandy Sanders, Christina Hubbart, Gareth Maslen, Valentin Ruano-Rubio, Dushyanth Jyothi, Alistair Miles, John O'Brien, Chris Gamble, Samuel O Oyola, Julian C Rayner, Chris I Newbold, Matthew Berriman, Chris C A Spencer, Gilean McVean, Nicholas P Day, Nicholas J White, Delia Bethell, Arjen M Dondorp, Christopher V Plowe, Rick M Fairhurst, Dominic P Kwiatkowski
ABSTRACT

We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Artemisinin, 98%