Skip to Content
Merck
CN
  • Discrete Fourier Transform as applicable technique in electrochemical detection of hydrazine using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as working electrode.

Discrete Fourier Transform as applicable technique in electrochemical detection of hydrazine using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as working electrode.

Materials science & engineering. C, Materials for biological applications (2013-03-19)
Mohammad Mahdi Doroodmand
ABSTRACT

Effect of "Discrete Fourier Transform" (DFT) is studied for electrochemical detection of some electroactive species using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as ultra micro electrode. Based on DFT theory, two independent phases i.e. the imaginary and real phases are evaluated during the oxidation/reduction of the quasi-reversible or irreversible electroactive species, revealing the independent components of imaginary (IImaginary) and real (IReal) currents. The results show that, in different electrochemical modes such as cyclic voltammetry (CV), the contribution of DFT to the electrochemical signals significantly improves the detection limit of the electrochemical technique. More sensitive signals are obtained at high scan rates according to the combination of electrochemical techniques with the DFT theory. The reliability of DFT algorithm was evaluated for rapid determination of trace amount of hydrazine (N2H4) at a scan rate up to 800 V s(-1). In this study, the amounts of phase and amplitude were estimated to 1.69 and 31.57, respectively. The detection limit of hydrazine was 4.13×10(-9) M. The application of this technique was also evaluated for determination of hydrazine in different industrial wastewater samples.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrazine sulfate salt, ACS reagent, ≥99.0%
Sigma-Aldrich
Hydrazine dihydrochloride, ≥98%
Sigma-Aldrich
Hydrazine sulfate salt, puriss. p.a., ACS reagent, ≥99.0%
Sigma-Aldrich
Hydrazine solution, 1.0 M in THF
Sigma-Aldrich
Hydrazine hemisulfate salt, ≥98%
Sigma-Aldrich
Hydrazine monohydrate, N2H4 64-65 %, reagent grade, ≥97%
Sigma-Aldrich
Hydrazine solution, 35 wt. % in H2O
Sigma-Aldrich
Hydrazine solution, 1.0 M in ethanol
Sigma-Aldrich
Hydrazine solution, 1 M in acetonitrile