Skip to Content
Merck
CN
  • Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells.

Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells.

Cellular and molecular neurobiology (2012-12-12)
Vedat Ali Yürekli, Semih Gürler, Mustafa Nazıroğlu, Abdülhadi Cihangir Uğuz, Hasan Rifat Koyuncuoğlu
ABSTRACT

Parkinson's disease is an incurable progressive neurological condition caused by a degeneration of dopamine-producing cells characterized by motor and non-motor symptoms. The major mechanisms of the antiepileptic actions of ZNS are inhibition of voltage-gated Na(+) channel, T-type voltage-sensitive Ca(2+) channel, Ca(2+)-induced Ca(2+) releasing system, and neuronal depolarization-induced glutamate release; and enhancement of release of inhibitory neurotransmitters; however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. We aimed to investigate to the effect of ZNS on the oxidative stress, cell viability, Ca(2+) signaling, and caspase activity that induced by the MPP(+) model of Parkinson's in neuronal PC12 cells. Neuronal PC12 cells were divided into four groups namely, control, ZNS, MPP(+), and ZNS+MPP(+) groups. The dose and duration of ZNS and MPP(+) were determined according to cell viability (MTT) analysis which used to assess the cell viability. The cells in ZNS, MPP(+), and ZNS+MPP(+) groups were incubated for 5 h with 100 μM ZNS, 10 h with 100 μM MPP(+), and 10 h with ZNS and MPP(+), respectively. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the MPP(+) group than in control although their levels were lower in ZNS and the ZNS+MPP(+) groups than in control. Reduced glutathione and glutathione peroxidase values were lower in the MPP(+) group although they were higher in the ZNS and the ZNS+MPP(+) groups than in control. Caspase-3 activity was lower in the ZNS group than in the MPP(+) group. In conclusion, ZNS induced modulator effects on the oxidative stress, intracellular Ca(2+), and the caspase-3 values in an experimental model of Parkinson disease.

MATERIALS
Product Number
Brand
Product Description

Supelco
Zonisamide solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Zonisamide sodium salt, ≥98% (HPLC), powder