Skip to Content
Merck
CN
  • Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.

Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.

Journal of biomedical materials research. Part A (2012-08-07)
Joseph C White, Whitney L Stoppel, Susan C Roberts, Surita R Bhatia
ABSTRACT

Perfluorocarbons (PFCs) are used in biomaterial formulations to increase oxygen (O(2) ) tension and create a homogeneous O(2) environment in three-dimensional tissue constructs. It is unclear how PFCs affect mechanical and transport properties of the scaffold, which are critical for robustness, intracellular signaling, protein transport, and overall device efficacy. In this study, we investigate composite alginate hydrogels containing a perfluorooctyl bromide (PFOB) emulsion stabilized with Pluronic(®) F68 (F68). We demonstrate that PFC addition significantly affects biomaterial properties and performance. Solution and hydrogel mechanical properties and transport of representative hydrophilic (riboflavin), hydrophobic (methyl and ethyl paraben), and protein (bovine serum albumin, BSA) solutes were compared in alginate/F68 composite hydrogels with or without PFOB. Our results indicate that mechanical properties of the alginate/F68/PFOB hydrogels are not significantly affected under small strains, but a significant decrease fracture stress is observed. The effective diffusivity D(eff) of hydrophobic small molecules decreases with PFOB emulsion addition, yet the D(eff) of hydrophilic small molecules remained unaffected. For BSA, the D(eff) increased and the loading capacity decreased with PFOB emulsion addition. Thus, a trade-off between the desired increased O(2) supply provided by PFCs and the mechanical weakening and change in transport of cellular signals must be carefully considered in the design of biomaterials containing PFCs.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ethylparaben, Pharmaceutical Secondary Standard; Certified Reference Material
Ethyl parahydroxybenzoate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethyl 4-hydroxybenzoate, ReagentPlus®, 99%
Supelco
Ethyl 4-hydroxybenzoate, Vetec, reagent grade, 99%