Skip to Content
Merck
CN
  • Switching of myosin-V motion between the lever-arm swing and brownian search-and-catch.

Switching of myosin-V motion between the lever-arm swing and brownian search-and-catch.

Nature communications (2012-07-19)
Keisuke Fujita, Mitsuhiro Iwaki, Atsuko H Iwane, Lorenzo Marcucci, Toshio Yanagida
ABSTRACT

Motor proteins are force-generating nanomachines that are highly adaptable to their ever-changing biological environments and have a high energy conversion efficiency. Here we constructed an imaging system that uses optical tweezers and a DNA handle to visualize elementary mechanical processes of a nanomachine under load. We apply our system to myosin-V, a well-known motor protein that takes 72 nm 'hand-over-hand' steps composed of a 'lever-arm swing' and a 'brownian search-and-catch'. We find that the lever-arm swing generates a large proportion of the force at low load (<0.5 pN), resulting in 3 k(B)T of work. At high load (1.9 pN), however, the contribution of the brownian search-and-catch increases to dominate, reaching 13 k(B)T of work. We believe the ability to switch between these two force-generation modes facilitates myosin-V function at high efficiency while operating in a dynamic intracellular environment.

MATERIALS
Product Number
Brand
Product Description

Supelco
Digoxigenin, analytical standard
Digoxigenin, European Pharmacopoeia (EP) Reference Standard