Skip to Content
Merck
CN
  • Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii.

Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii.

The Journal of biological chemistry (2012-07-18)
Ryutaro Tokutsu, Nobuyasu Kato, Khanh Huy Bui, Takashi Ishikawa, Jun Minagawa
ABSTRACT

Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-D-maltoside (β-DM) or n-dodecyl-α-D-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core.