Skip to Content
Merck
CN
  • Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein.

Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein.

Bioorganic & medicinal chemistry (2011-03-23)
Bernd Dörner, Claudia Kuntner, Jens P Bankstahl, Thomas Wanek, Marion Bankstahl, Johann Stanek, Julia Müllauer, Florian Bauer, Severin Mairinger, Wolfgang Löscher, Donald W Miller, Peter Chiba, Markus Müller, Thomas Erker, Oliver Langer
ABSTRACT

Aim of this study was to label the potent dual P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) inhibitor elacridar (1) with (18)F to provide a positron emission tomography (PET) radiotracer to visualize Pgp and BCRP. A series of new 1- and 2-halogen- and nitro-substituted derivatives of 1 (4a-e) was synthesized as precursor molecules and reference compounds for radiolabelling and shown to display comparable in vitro potency to 1 in increasing rhodamine 123 accumulation in a cell line overexpressing human Pgp (MDCKII-MDR1). 1-[(18)F]fluoroelacridar ([(18)F]4b) was synthesized in a decay-corrected radiochemical yield of 1.7±0.9% by a 1-step no-carrier added nucleophilic aromatic (18)F-substitution of 1-nitro precursor 4c. Small-animal PET imaging of [(18)F]4b was performed in naïve rats, before and after administration of unlabelled 1 (5 mg/kg, n=3), as well as in wild-type and Mdr1a/b((-/-))Bcrp1((-/-)) mice (n=3). In PET experiments in rats, administration of unlabelled 1 increased brain activity uptake by a factor of 9.5 (p=0.0002, 2-tailed Student's t-test), whereas blood activity levels remained unchanged. In Mdr1a/b((-/-))Bcrp1((-/-)) mice, the mean brain-to-blood ratio of activity at 60 min after tracer injection was 7.6 times higher as compared to wild-type animals (p=0.0002). HPLC analysis of rat brain tissue extracts collected at 40 min after injection of [(18)F]4b revealed that 93±7% of total radioactivity in brain was in the form of unchanged [(18)F]4b. In conclusion, the in vivo behavior of [(18)F]4b was found to be similar to previously described [(11)C]1 suggesting transport of [(18)F]4b by Pgp and/or BCRP at the rodent BBB. However, low radiochemical yields and a significant degree of in vivo defluorination will limit the utility of [(18)F]4b as a PET tracer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Elacridar, ≥98% (HPLC)