Skip to Content
Merck
CN
  • Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases.

Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases.

Applied and environmental microbiology (2009-12-08)
Pey-Shynan Jan, Hsu-Yuang Huang, Hueih-Min Chen
ABSTRACT

The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S(50)s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 microg/ml and 0.29 microg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley alpha-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants ( approximately 0.05 microg in 50 mg of leaves) were far lower than the S(50) determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cecropin B, ≥97% (HPLC), powder