- Composition-explicit distillation curves of diesel fuel with glycol ether and glycol ester oxygenates: fuel analysis metrology to enable decreased particulate emissions.
Composition-explicit distillation curves of diesel fuel with glycol ether and glycol ester oxygenates: fuel analysis metrology to enable decreased particulate emissions.
We recently introduced several important improvements in the measurement of distillation curves of complex fluids. The modifications to the classical measurement provide for (1) a composition-explicit data channel for each distillate fraction (for both qualitative and quantitative analysis), (2) temperature measurements that are true thermodynamic state points that can be modeled with an equation of state, (3) temperature, volume, and pressure measurements of low uncertainty suitable for equation of state development, (4) consistency with a century of historical data, (5) an assessment of the energy content of each distillate fraction, (6) trace chemical analysis of each distillate fraction, and (7) corrosivity assessment of each distillate fraction. We have applied the new method to the measurement of rocket propellant, gasolines, jet fuels, and hydrocarbon crude oils. In this paper we presentthe application of the technique to representative diesel fuel and mixtures of diesel fuel with some of the more promising oxygenating agents; namely, the glycol ethers and glycol esters: tri(propylene glycol) methyl ether (TPM), dibutyl maleate (DBM), and an 80/ 20 (vol/vol) mixture of diethylene glycol methyl ether (DGME) + 1,2-dimethoxyethane (DME) a mixture often referred to as Cetaner. We present not only the distillation curves but also a chemical characterization of each fraction, and discuss the contrasts between the various mixtures. The measurements are significant as an environmental design tool for decreased particulate emissions.