Skip to Content
Merck
CN
  • Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets.

Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2008-05-31)
Thomas Quinten, Thomas De Beer, Chris Vervaet, Jean Paul Remon
ABSTRACT

The aim of this study was to develop sustained-release matrix tablets by means of injection moulding and to evaluate the influence of process temperature, matrix composition (EC and HPMC concentration) and viscosity grade of ethylcellulose (EC) and hydroxypropylmethylcellulose (HPMC) on processability and drug release. The drug release data were analyzed to get insight in the release kinetics and mechanism. Formulations containing metoprolol tartrate (30%, model drug), EC with dibutyl sebacate (matrix former and plasticizer) and hydrophilic polymer HPMC were extruded and subsequently injection moulded into tablets (375 mg, 10 mm diameter, convex-shaped) at temperatures ranging from 110 to 140 degrees C. Tablets containing 30% metoprolol and 70% ethylcellulose (EC 4mPa s) showed an incomplete drug release within 24 h (<50%). Increasing production temperatures resulted in a lower drug release rate. Substituting part of the EC fraction by HPMC (HPMC/EC-ratio: 20/50 and 35/35) resulted in faster and constant drug release rates. Formulations containing 50% HPMC had a complete and first-order drug release profile with drug release controlled via the combination of diffusion and swelling/erosion. Faster drug release rates were observed for higher viscosity grades of EC (Mw>20 mPa s) and HPMC (4000 and 10,000 mPa s). Tablet porosity was low (<4%). Differential scanning calorimetry (DSC) and X-ray powder diffraction studies (X-RD) showed that solid dispersions were formed during processing. Using thermogravimetrical analysis (TGA) and gel-permeation chromatography no degradation of drug and matrix polymer was observed. The surface morphology was investigated with the aid of scanning electron microscopy (SEM) showing an influence of the process temperature. Raman spectroscopy demonstrated that the drug is distributed in the entire matrix, however, some drug clusters were identified.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dibutyl sebacate, ≥97.0% (GC)
Supelco
Dibutyl sebacate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dibutyl sebacate, technical grade