Skip to Content
Merck
CN
  • A selective synthesis of hydroxyborate anions as novel anchors for zirconocene catalysts.

A selective synthesis of hydroxyborate anions as novel anchors for zirconocene catalysts.

Dalton transactions (Cambridge, England : 2003) (2008-05-15)
Christine Bibal, Catherine C Santini, Yves Chauvin, Christophe Vallée, Hélène Olivier-Bourbigou
ABSTRACT

A new family of hydroxytris(pentafluorophenyl)borate anions [B(C6F5)3OH](-) associated with organic and aprotic cations c+ (imidazolium, pyrrolidinium and phosphonium) has been prepared by a general one-pot synthesis that implies the chloride borate analogues [B(C6F5)3Cl](-)[c]+. The [c]+[B(C6F5)3OH](-) salts have been isolated and fully characterized. The borate anion [B(C6F5)3OH](-) has been shown to protonate the Zr-Me bond in the Cp2ZrMe2 complex forming CH4 and the first published example of anionic [Cp2Zr(Me)OB(C6F5)3](-) species. Standard spectroscopic methods demonstrate the covalent character of the Zr metal center and the anionic character of the boron atom. This protonolysis methodology using [B(C6F5)3OH](-) anion affords a new route for the incorporation of a covalently bonded anionic functionality on organometallic complexes. This provides a new way to immobilize transition metal complexes in ionic liquids.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bis(cyclopentadienyl)zirconium(IV) dichloride, ≥98%