Skip to Content
Merck
CN
  • Effects of nanoanatase on the photosynthetic improvement of chloroplast damaged by linolenic acid.

Effects of nanoanatase on the photosynthetic improvement of chloroplast damaged by linolenic acid.

Biological trace element research (2008-04-22)
Mingyu Su, Jie Liu, Sitao Yin, Linglan Ma, Fashui Hong
ABSTRACT

To further evaluate the photosynthetic effects of nanoanatase, the improvement of spinach chloroplast photosynthesis damaged by linolenic acid was investigated in the present paper. Several results showed that after the addition of nanoanatase to the linolenic acid-treated chloroplast, the light absorption increased by linolenic acid could be decreased, but the excitation energy distribution from photosystem (PS) I to PS II was promoted, and the decrease of PS II fluorescence yield caused by linolenic acid was reduced and the inhibition of oxygen evolution caused by linolenic acid of several concentrations was decreased. It was considered that nanoanatase could combine with linolenic acid and decrease the damage of linolenic acid on the structure and function of chloroplast.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) butoxide, purum, ≥97.0% (gravimetric)
Sigma-Aldrich
Titanium(IV) butoxide, polymer
Sigma-Aldrich
Titanium(IV) butoxide, reagent grade, 97%