Skip to Content
Merck
CN
  • Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane.

Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane.

Environmental science & technology (2007-09-08)
Wontae Lee, Paul Westerhoff, Jean-Philippe Croué
ABSTRACT

Nitrogen-containing disinfection byproducts (N-DBPs) are potentially toxic. This study assessed the formation of three N-DBPs (dichloroacetonitrile (DCAN), trichloronitromethane (TCNM), and N-nitrosodimethylamine (NDMA)) and one regulated DBP (chloroform) upon adding free chlorine and monochloramine into solutions containing different fractions (hydrophobic, transphilic, hydrophilic, and colloidal) of dissolved organic matter (DOM) isolates (n=17). We hypothesized that N-DBP formation would increase for organic matter enriched in organic nitrogen. Formation potential tests were conducted with free chlorine or preformed monochloramine. Chloramination formed, on average, 10 times lower chloroform concentrations, but 5 times higher DCAN concentrations, as compared with free chlorine addition. The formation of the two halogenated N-DBPs (DCAN and TCNM) increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased upon adding free chlorine, but the N-DBP formation was relatively constant upon adding monochloramine. NDMA, a nonhalogenated N-DBP, formed on average 0.26 nmol per mg of DOC (4.5 nmol per mg of DON) upon adding monochloramine; no NDMA formation occurred upon adding free chlorine. NDMA formation increased as the DOC/DON ratio decreased (i.e., increasing nitrogen content of DOM). NDMA formation also increased as the amino sugar to aromatic ratio of DOM increased. The results support the hypothesis that DON promotes the formation of N-DBPs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dichloroacetonitrile, 98%