Skip to Content
Merck
CN
  • Engineering the enantioselectivity of glutathione transferase by combined active-site mutations and chemical modifications.

Engineering the enantioselectivity of glutathione transferase by combined active-site mutations and chemical modifications.

Biochimica et biophysica acta (2007-08-11)
Ylva Ivarsson, Malena A Norrgård, Ulf Hellman, Bengt Mannervik
ABSTRACT

Based on the crystal structure of human glutathione transferase M1-1, cysteine residues were introduced in the substrate-binding site of a Cys-free mutant of the enzyme, which were subsequently alkylated with 1-iodoalkanes. By different combinations of site-specific mutations and chemical modifications of the enzyme the enantioselectivity in the conjugation of glutathione with the epoxide-containing substrates 1-phenylpropylene oxide and styrene-7,8-oxide were enhanced up to 9- and 10-fold. The results also demonstrate that the enantioselectivity can be diminished, or even reversed, by suitable modifications, which can be valuable under some conditions. The redesign of the active-site structure for enhanced or diminished enantioselectivities have divergent requirements for different epoxides, calling for a combinatorial approach involving alternative mutations and chemical modifications to optimize the enantioselectivity for a targeted substrate. This approach outlines a general method of great potential for fine-tuning substrate specificity and tailoring stereoselectivity of recombinant enzymes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
cis-Stilbene oxide, 97%
Sigma-Aldrich
trans-Stilbene oxide, 98%