Skip to Content
Merck
CN

Investigation into the diffusion of water into HEMA-co-MOEP hydrogels.

Biomacromolecules (2004-07-13)
Karina A George, Edeline Wentrup-Byrne, David J T Hill, Andrew K Whittaker
ABSTRACT

Cross-linked homopolymers and copolymers of 2-hydroxyethyl methacrylate, HEMA, and ethylene glycol methacrylate phosphate, MOEP, have been synthesized, and the diffusion of water into these systems has been investigated. Only polymers with 0-20 mol % MOEP exhibited ideal swelling behavior as extensive fracturing occurred in the systems with greater than 20 mol % MOEP as the polymers began to swell during water sorption. Gravimetric studies were used in conjunction with magnetic resonance imaging of the diffusion front to elucidate the diffusion mechanism for these systems. In the case of the cross-linked HEMA homopolymer gels, the water transport mechanism was determined to be concentration-independent Fickian diffusion. However, as the fraction of MOEP in the network increased, the transport mechanism became increasingly exponentially concentration-dependent but remained Fickian until the polymer consisted of 30 mol % MOEP where the water transport could no longer been described by Fickian diffusion.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phosphoric acid 2-hydroxyethyl methacrylate ester, contains 700-1000 ppm monomethyl ether hydroquinone, 90%