- Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization.
Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization.
Thin sol-gel-formed calcium phosphate (Ca-P) films were formed on sintered porous-surfaced implants as an approach to increasing the rate of bone ingrowth. The films were prepared using either an inorganic precursor solution (with calcium nitrate tetrahydrate and ammonium dihydrogen phosphate) or an organic precursor solution (with calcium nitrate tetrahydrate and triethyl phosphite). We report on the formation and characteristics of the films so formed. Film characteristics were assessed by thin film X-ray diffraction, diffuse-reflectance infrared Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. In addition, thin sections were prepared either across or parallel to the Ca-P/Ti6Al4V interface and examined by transmission electron microscopy. Both approaches resulted in the formation of nanocrystalline carbonated hydroxyapatite films but with different Ca/P ratios and structures, the Inorganic Route-formed film having a lower Ca/P ratio (1.46 cf 2.10 for the Organic Route-formed film) and having a more irregular topography. An interfacial reaction product (CaTi(2)O(5)) was identified by selected area electron diffraction with the Inorganic Route-formed film only.