Skip to Content
Merck
CN
  • Study on the regioselectivity and mechanism of the aromatic hydroxylation of monofluoroanilines.

Study on the regioselectivity and mechanism of the aromatic hydroxylation of monofluoroanilines.

Chemico-biological interactions (1992-12-01)
N H Cnubben, J Vervoort, C Veeger, I M Rietjens
ABSTRACT

The in vitro and in vivo metabolism of monofluoroanilines was investigated. Special attention was focused on the regioselectivity of the aromatic hydroxylation by cytochromes P-450 and the mechanism by which this reaction might proceed. The results clearly demonstrate that the in vitro and in vivo regioselectivity of the aromatic hydroxylation by cytochromes P-450 is dependent on the fluoro-substituent pattern of the aromatic aniline-ring. Results from experiments with liver microsomes from differently pretreated rats demonstrate that the observed regioselectivity for the aromatic hydroxylation is not predominantly determined by the active site of the cytochromes P-450. To investigate the underlying reason for the observed regioselectivity, semi-empirical molecular orbital calculations were performed. Outcomes of these calculations show that neither the frontier orbital densities of the LUMO/LUMO + 1 (lowest unoccupied molecular orbital) of the monofluoroanilines nor the spin-densities in their NH. radicals can explain the observed regioselectivities. The frontier orbital densities of the HOMO/HOMO - 1 (highest occupied molecular orbital) of the monofluoroanilines however, qualitatively correlate with the regioselectivity of the aromatic hydroxylation. Based on these results it is concluded that the cytochrome P-450 dependent aromatic hydroxylation of monofluoroanilines does not proceed by hydrogen or electron abstraction from the aniline substrate to give an aniline-NH. radical. The results rather suggest that cytochrome P-450 catalyzed aromatic hydroxylation of monofluoroanilines proceeds by an electrophilic attack of the (FeO)3+ species of cytochrome P-450 on a specific carbon atom of the aromatic aniline-ring.

MATERIALS
Product Number
Brand
Product Description

Supelco
2-Fluoroaniline, ≥99%
Sigma-Aldrich
4-Fluoroaniline, 99%