Skip to Content
Merck
CN
  • Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC).

Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC).

Journal of agricultural and food chemistry (2002-09-19)
Claudio Delfini, Piero Gaia, Raffaella Schellino, Morela Strano, Adolfo Pagliara, Stefano Ambrò
ABSTRACT

Dimethyl dicarbonate (DMDC) was added to grape must and to synthetic media and results showed that, at 20 degrees C, 150 mg.L(-)(1) DMDC completely inhibited the fermentation of a grape must that was previously inoculated with 10(6) cells.mL(-)(1) Saccharomyces bayanus and Saccharomyces uvarum. Brettanomyces intermedius, Candida guilliermondii, Hansenula jadinii, Hansenula petersonii, Kloeckera apiculata, Pichia membranaefaciens, and Saccharomyces cerevisiae were inhibited by 250 mg.L(-)(1). Candida valida was inhibited in the presence of 350 mg.L(-)(1), whereas Hanseniaspora osmophila, Saccharomycodes ludwigii, Schizosaccharomyces pombe, and Zygosaccharomyces bailii required 400 mg.L(-)(1). Delay of fermentation (but not inhibition) was noted in the presence of 400 mg.L(-)(1) for the following cultures: Brettanomyces anomalus, Hanseniaspora uvarum, Metschnikowia pulcherrima, Schizosaccharomyces japonicus, Torulaspora delbrueckii, and Zygosaccharomyces florentinus. Acetobacter aceti and Lactobacillus sp. were completely inhibited using 1000 and 500 mg.L(-)(1) DMDC, respectively. The fermentation of a grape must inoculated with 10(6) cells.mL(-)(1) of different wine yeasts was delayed for 4 days after the prior addition of 200 mg.L(-)(1) of DMDC; 200 mg.L(-)(1) DMDC did not show any residual inhibitory effect after 12 h, nor did 300 mg.L(-)(1) 24 h after the addition. In cellar experiments, indigenously contaminated grape musts (with and without skins) showed a delay in fermentation of 48 h after the addition of only 50 mg.L(-)(1) DMDC. The possibility of using DMDC (as pure grade as commercially available) in grape must as a disinfectant for the decontamination of musts indigenously contaminated with wild yeast should be considered seriously, despite its apparent low solubility in water.