Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 11 at 9:00 PM CDT and Saturday, Apr 12 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

Merck
CN
  • Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of acidianus ambivalens.

Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of acidianus ambivalens.

Frontiers in microbiology (2011-07-13)
Andreas Veith, Tim Urich, Kerstin Seyfarth, Jonas Protze, Carlos Frazão, Arnulf Kletzin
ABSTRACT

The sulfur oxygenase reductase (SOR) is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H(2)S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-heme iron site and a cysteine persulfide. Substrate access and product exit occur via apolar chimney-like protrusions at the fourfold symmetry axes, via narrow polar pores at the threefold symmetry axes and via narrow apolar pores within in each subunit. In order to investigate the function of the pores we performed site-directed mutagenesis and inhibitor studies. Truncation of the chimney-like protrusions resulted in an up to sevenfold increase in specific enzyme activity compared to the wild type. Replacement of the salt bridge-forming Arg(99) residue by Ala at the threefold symmetry axes doubled the activity and introduced a bias toward reduced reaction products. Replacement of Met(296) and Met(297), which form the active site pore, lowered the specific activities by 25-55% with the exception of an M(296)V mutant. X-ray crystallography of SOR wild type crystals soaked with inhibitors showed that Hg(2+) and iodoacetamide (IAA) bind to cysteines within the active site, whereas Zn(2+) binds to a histidine in a side channel of the enzyme. The Zn(2+) inhibition was partially alleviated by mutation of the His residue. The expansion of the pores in the outer shell led to an increased enzyme activity while the integrity of the active site pore seems to be important. Hg(2+) and IAA block cysteines in the active site pocket, while Zn(2+) interferes over a distance, possibly by restriction of protein flexibility or substrate access or product exit.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
GenElute PCR Clean-Up Kit, sufficient for 70 purifications
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
1 g
Estimated to ship on April 14, 2025
Details...
CN¥754.68
5 g
Estimated to ship on April 14, 2025
Details...
CN¥2,453.86
25 g
Available to ship on April 11, 2025
Details...
CN¥9,032.72