Skip to Content
Merck
CN
  • TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.

TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2013-03-29)
Erica S Schwartz, Jun-Ho La, Nicole N Scheff, Brian M Davis, Kathryn M Albers, G F Gebhart
ABSTRACT

Visceral afferents expressing transient receptor potential (TRP) channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. Using a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice weekly) of caerulein-induced AP (AP), we studied the involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis and sprouting of pancreatic nerve fibers, and increased TRPV1 and TRPA1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated before week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked the development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1, and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked the development of CP and pain behaviors even when mice were challenged with seven more weeks of twice weekly caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest: (1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, (2) that there is a transition from AP to CP, after which TRP channel antagonism is ineffective, and thus (3) that early intervention with TRP channel antagonists may attenuate the transition to and development of CP effectively.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lactoperoxidase from bovine milk, lyophilized, powder, ≥150 U/mg
Sigma-Aldrich
Peroxidase from horseradish, Type X, ammonium sulfate suspension
Sigma-Aldrich
Peroxidase from horseradish, Highly stabilized, essentially salt-free, lyophilized powder, 200-300 units/mg solid (using pyrogallol)
Sigma-Aldrich
Peroxidase from horseradish, Type VI-A, essentially salt-free, lyophilized powder, ≥250 units/mg solid (using pyrogallol), 950-2000 units/mg solid (using ABTS)
Sigma-Aldrich
Peroxidase from horseradish, Type VI, essentially salt-free, lyophilized powder, ≥250 units/mg solid (using pyrogallol)
Sigma-Aldrich
Peroxidase from horseradish, Type II, essentially salt-free, lyophilized powder, 150-250 units/mg solid (using pyrogallol)
Sigma-Aldrich
Peroxidase from horseradish, lyophilized, powder, ~150 U/mg
Sigma-Aldrich
Lactoperoxidase from bovine milk, lyophilized powder (essentially salt-free), ≥200 units/mg protein
Sigma-Aldrich
Peroxidase from horseradish, Type XII, essentially salt-free, lyophilized powder, ≥250 units/mg solid (using pyrogallol)
Sigma-Aldrich
Peroxidase from horseradish, Type I, essentially salt-free, lyophilized powder, ≥50 units/mg solid (using pyrogallol)
Sigma-Aldrich
Peroxidase from horseradish, Vetec, reagent grade
Sigma-Aldrich
Myeloperoxidase from human leukocytes, lyophilized powder, ≥50 units/mg protein