Skip to Content
Merck
CN
  • JMY expression by Sertoli cells contributes to mediating spermatogenesis in mice.

JMY expression by Sertoli cells contributes to mediating spermatogenesis in mice.

The FEBS journal (2020-04-13)
Yue Liu, Jiaying Fan, Yan Yan, Xuening Dang, Ran Zhao, Yimei Xu, Zhide Ding
ABSTRACT

Sertoli cells are crucial for spermatogenesis in the seminiferous epithelium because their actin cytoskeleton supports vesicular transport, cell junction formation, protein anchoring, and spermiation. Here, we show that a junction-mediating and actin-regulatory protein (JMY) affects the blood-tissue barrier (BTB) function through remodeling of the Sertoli cell junctional integrity and it also contributes to controlling endocytic vesicle trafficking. These functions are critical for the maintenance of sperm fertility since loss of Sertoli cell-specific Jmy function induced male subfertility in mice. Specifically, these mice have (a) impaired BTB integrity and spermatid adhesion in the seminiferous tubules; (b) high incidence of sperm structural deformity; and (c) reduced sperm count and poor sperm motility. Moreover, the cytoskeletal integrity was compromised along with endocytic vesicular trafficking. These effects impaired junctional protein recycling and reduced Sertoli cell BTB junctional integrity. In addition, JMY interaction with actin-binding protein candidates α-actinin1 and sorbin and SH3 domain containing protein 2 was related to JMY activity, and in turn, actin cytoskeletal organization. In summary, JMY affects the control of spermatogenesis through the regulation of actin filament organization and endocytic vesicle trafficking in Sertoli cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-OCLN antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-SORBS2 antibody,Mouse monoclonal, clone S5C, purified from hybridoma cell culture