Skip to Content
Merck
CN
  • A novel cell line from human eccrine sweat gland duct cells for investigating sweating physiology.

A novel cell line from human eccrine sweat gland duct cells for investigating sweating physiology.

International journal of cosmetic science (2022-03-10)
Jessica Welzel, Sabine Grüdl, Bernhard Banowski, Holger Stark, Andrea Sättler, Thomas Welss
ABSTRACT

Human eccrine sweat glands (eSG) represent vital components of the skin involved in regulating body temperature. Especially the eccrine duct, which opens directly into the skin surface and releases the aqueous sweat, constitutes the first contact point with topically applied substances. For scientific investigations and to understand the underlying sweating mechanism on a cellular level defined cellular material is beneficial. We, therefore, strived to generate a cell line derived from human eSG duct cells for identifying new mechanisms in sweating control, as such a standardized cell line is currently lacking. Isolated primary human eSG duct cells were transduced with simian virus 40 large T antigen (SV40T) by lentiviral transduction. Successfully SV40T-transduced clones were selected by single-cell cloning with one clone, named 1D10, being particularly described in this work. In performed cellular investigations, SV40T-transduced duct-derived cells exhibited an extended lifespan with stable population doubling times suggesting its immortality. Besides, 1D10 clonal cell culture demonstrated similarities with parental, primary duct cells regarding gene expression of selected sweat gland-related markers. When combined with primary coil cells in a hanging drop co-culture, those transduced duct-derived cells showed some duct cell-like features. Further, a certain degree of cellular communication and a specific reaction towards substance application was observed. Generated and herein described cell line derived from isolated human eSG duct cells is, based on the presented scientific findings, considered as immortal. Besides, this cell line shows some similarity with primary duct cells, although alterations from native glands were detected, among which is loss of expression of cystic fibrosis transmembrane conductance regulator. Provided some further investigations, presented SV40T-transduced duct-cell derived cell line seems a suited surrogate of primary eccrine duct cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-SCNN1A antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution