Skip to Content
Merck
CN
  • Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst.

Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst.

ACS applied materials & interfaces (2018-02-01)
Huajie Xu, Bingkai Wang, Changfu Shan, Pinxian Xi, Weisheng Liu, Yu Tang
ABSTRACT

Developing convenient doping to build highly active oxygen evolution reaction (OER) electrocatalysts is a practical process for solving the energy crisis. Herein, a facile and low-cost in situ self-assembly strategy for preparing a Ce-doped NiFe-LDH nanosheets/nanocarbon (denoted as NiFeCe-LDH/CNT, LDH = layered double hydroxide and CNT = carbon nanotube) hierarchical nanocomposite is established for enhanced OER, in which the novel material provides its overall advantageous structural features, including high intrinsic catalytic activity, rich redox properties, high, flexible coordination number of Ce3+, and strongly coupled interface. Further experimental results indicate that doped Ce into NiFe-LDH/CNT nanoarrays brings about the reinforced specific surface area, electrochemical surface area, lattice defects, and the electron transport between the LDH nanolayered structure and the framework of CNTs. The effective synergy prompts the NiFeCe-LDH/CNT nanocomposite to possess superior OER electrocatalytic activity with a low onset potential (227 mV) and Tafel slope (33 mV dec-1), better than the most non-noble metal-based OER electrocatalysts reported. Therefore, the combination of the remarkable catalytic ability and the facile normal temperature synthesis conditions endows the Ce-doped LDH nanocomposite as a promising catalyst to expand the field of lanthanide-doped layered materials for efficient water-splitting electrocatalysis with scale-up potential.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cerium(III) nitrate hexahydrate, 99.999% trace metals basis