Skip to Content
Merck
CN
  • Tyrosine phosphorylation induced by cross-linking of Fc gamma-receptor type II in human neutrophils.

Tyrosine phosphorylation induced by cross-linking of Fc gamma-receptor type II in human neutrophils.

The Biochemical journal (1995-03-01)
L Liang, C K Huang
ABSTRACT

Neutrophils express several receptors for the Fc region of IgG molecules. Specific cross-linking of the type II receptor (Fc gamma RII) can be achieved by treating neutrophils with the Fab fragment of a specific monoclonal antibody IV.3 against the receptor followed by goat anti-mouse IgG F(ab')2 fragment. Such treatment initiates a number of neutrophil responses including the release of O2-. and increased protein tyrosine phosphorylation. The increase in tyrosine phosphorylation is rapid and transient and correlates with O2-. release. Both responses are inhibited by pretreatment of neutrophils with a protein tyrosine kinase inhibitor, genistein. The increase in protein tyrosine phosphorylation is not inhibited by pretreatment of neutrophils with pertussis toxin or an intracellular Ca2+ chelator, but is enhanced by a phosphoprotein phosphatase inhibitor, okadaic acid. The activity of a neutrophil Ca2+/calmodulin-dependent protein kinase II (CAMPKII) is also stimulated by cross-linking Fc gamma RII. The increase in CAMPKII activity is inhibited by pretreatment with either genistein or Ca2+ chelator. The results suggest that the increase in protein tyrosine phosphorylation induced by cross-linking of Fc gamma RII requires neither pertussis-toxin-sensitive G-proteins nor a rise in intracellular Ca2+ but can be regulated by protein phosphatases. Furthermore, protein tyrosine phosphorylation may be an early signal functionally linked to Fc gamma RII-mediated signal transduction leading to CAMPKII activation and O2-. release in human neutrophils.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protein Kinase A Inhibitor Fragment 6-22 amide, ≥97% (HPLC)