- Involvement of vasoactive intestinal polypeptide in the parasympathetic vasodilatation of the rat masseter muscle.
Involvement of vasoactive intestinal polypeptide in the parasympathetic vasodilatation of the rat masseter muscle.
The parasympathetic vasodilatory fibres are known to innervate vessels in a rat masseter muscle via both cholinergic and non-cholinergic mechanisms. However, the non-cholinergic mechanisms are still unclear. Recently, vasoactive intestinal polypeptide (VIP) was convincingly shown to be involved in the parasympathetic vasodilatation in orofacial areas, such as submandibular glands and lower lip. However, very little is known about the rat masseter muscle. The present study was designed in the rat masseter muscle to assess (1) whether the parasympathetic nerve innervating vessels have VIP immunoreactivities, (2) whether intravenous administration of VIP induces the vasodilatation, and (3) effects of selective VIP receptor antagonist ([4Cl-d-Phe(6), Leu(17)] VIP) in the presence or absence of atropine on the parasympathetic vasodilatation. The VIP immunoreactivities were found at two sites of the parasympathetic otic ganglion and nerve fibres located around vessels. The intravenous administration of VIP induced the vasodilatation, and [4Cl-d-Phe(6), Leu(17)] VIP markedly decreased the vasodilatation evoked by VIP administration. The parasympathetic vasodilatation was not inhibited by [4Cl-d-Phe(6), Leu(17)] VIP. However, treatment with [4Cl-d-Phe(6), Leu(17)] VIP markedly decreased the parasympathetic vasodilatation when [4Cl-d-Phe(6), Leu(17)] VIP was administered together with atropine. These results suggest that (1) VIP exists in the postganglionic parasympathetic nerve innervating the vessels in the masseter muscle, (2) the intravenous administration of VIP induces the vasodilatation in the masseter muscle, and (3) VIP may be involved in the parasympathetic vasodilatation in the masseter muscle when muscarinic cholinergic receptors are deactivated by either atropine or the suppression of the ACh release.