Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

For important updates on recent policy changes, please click here for more details.

Merck
CN

Central nervous system myelin: structure, function, and pathology.

Clinical biochemistry (1991-04-01)
C M Deber, S J Reynolds
ABSTRACT

Multiple sclerosis (MS) and a number of related distinctive diseases are characterized by the active degradation of central nervous system (CNS) myelin, an axonal sheath comprised essentially of proteins and lipids. These demyelinating diseases appear to arise from complex interactions of genetic, immunological, infective, and biochemical mechanisms. While circumstances of MS etiology remain hypothetical, one persistent theme involves recognition by the immune system of myelin-specific antigens derived from myelin basic protein (MBP), the most abundant extrinsic myelin membrane protein, and/or another equally susceptible myelin protein or lipid component. Knowledge of the biochemical and physical-chemical properties of myelin proteins and lipids, particularly their composition, organization, structure, and accessibility with respect to the compacted myelin multilayers, thus becomes central to the understanding of how and why these antigens become selected during the development of MS. This review focuses on current understanding of the molecular basis underlying demyelinating disease as it may relate to the impact of the various protein and lipid components on myelin morphology; the precise molecular architecture of this membrane as dictated by protein-lipid and lipid-lipid interactions; and the relationship, if any, between the protein/lipid components and the destruction of myelin in pathological situations.