Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • miR-17-5p drives G2/M-phase accumulation by directly targeting CCNG2 and is related to recurrence of head and neck squamous cell carcinoma.

miR-17-5p drives G2/M-phase accumulation by directly targeting CCNG2 and is related to recurrence of head and neck squamous cell carcinoma.

BMC cancer (2021-10-03)
Qiang Huang, Yu-Jie Shen, Chi-Yao Hsueh, Yang Guo, Yi-Fan Zhang, Jiao-Yu Li, Liang Zhou
ABSTRACT

The human miR-17-92 polycistron is the first reported and most well-studied onco-miRNA with a cluster of seven miRNAs. miR-17-5p, a member of the miR-17-92 family, plays an important role in tumor cell proliferation, apoptosis, migration and invasion. However, few studies have shown the role of miR-17-5p in the cell cycle of head and neck squamous cell carcinoma (HNSCC). RT-qPCR was used to detect miR-17-5p expression levels in 64 HNSCC tissues and 5 cell lines. The relationship between the expression of miR-17-5p in the tissues and the clinical characteristics of the patients was analyzed. HNSCC cells were transfected with an miR-17-5p mimic or inhibitor to evaluate cell cycle distribution by flow cytometry. Cell cycle distribution of cells transfected with target gene was evaluated using flow cytometry. Dual-luciferase reporter assay was used to detect the regulatory effect of miR-17-5p on target gene expression. In the present study, we found that miR-17-5p expression in HNSCC tissues and cell lines was remarkably increased, and miR-17-5p is related to recurrence in HNSCC patients. Silencing miR-17-5p blocked HNSCC cells in G2/M phase, whereas its overexpression propelled cell cycle progression. More importantly, we verified that miR-17-5p negatively regulated CCNG2 mRNA and protein expression by directly targeting its 3'UTR. These findings suggest that miR-17-5p might act as a tumor promoter and prognostic factor for recurrence in HNSCC patients.