Skip to Content
Merck
CN
  • Electrogenic Na⁺/HCO₃⁻ co-transporter-1 is essential for the parathyroid hormone-stimulated intestinal HCO₃⁻ secretion.

Electrogenic Na⁺/HCO₃⁻ co-transporter-1 is essential for the parathyroid hormone-stimulated intestinal HCO₃⁻ secretion.

Biochemical and biophysical research communications (2011-05-31)
Narattaphol Charoenphandhu, Suparerk Laohapitakworn, Kamonshanok Kraidith, La-Iad Nakkrasae, Prapaporn Jongwattanapisan, Phuntila Tharabenjasin, Nateetip Krishnamra
ABSTRACT

Parathyroid hormone (PTH) was recently demonstrated to enhance the HCO(3)(-) secretion through the apical anion channel, cystic fibrosis transmembrane conductance regulator (CFTR), but how the HCO(3)(-) entered the epithelial cells was not well understood, in part, due to the lack of specific inhibitors of the basolateral HCO(3)(-) transporters. Moreover, the function of the PTH-stimulated HCO(3)(-) secretion has never been investigated in vivo. Here, we designed three specific pairs of small interfering RNA sequences to simultaneously knockdown three variants of the electrogenic Na(+)/HCO(3)(-) co-transporter (NBCe)-1 in the intestinal epithelium-like Caco-2 monolayer. The results showed that NBCe1 mRNA levels were markedly reduced, and the PTH-induced transepithelial current and voltage changes were diminished after triple knockdown as determined by quantitative real-time PCR and Ussing chamber technique, respectively. An in vivo ligated intestinal loop study further showed that there was an increased fluid secretion, presumably driven by HCO(3)(-) transport, in the ileum, but not in jejunum or colon, of rats administered intravenously with 2 μg/kg body weight of rat PTH 1-34. Therefore, the present results suggested that PTH stimulated intestinal HCO(3)(-) secretion, particularly in the ileum, by inducing the basolateral HCO(3)(-) uptake via NBCe1.