Skip to Content
Merck
CN
  • An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence.

An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence.

Cancer cell (2021-01-09)
Eugen Dhimolea, Ricardo de Matos Simoes, Dhvanir Kansara, Aziz Al'Khafaji, Juliette Bouyssou, Xiang Weng, Shruti Sharma, Joseline Raja, Pallavi Awate, Ryosuke Shirasaki, Huihui Tang, Brian J Glassner, Zhiyi Liu, Dong Gao, Jordan Bryan, Samantha Bender, Jennifer Roth, Michal Scheffer, Rinath Jeselsohn, Nathanael S Gray, Irene Georgakoudi, Francisca Vazquez, Aviad Tsherniak, Yu Chen, Alana Welm, Cihangir Duy, Ari Melnick, Boris Bartholdy, Myles Brown, Aedin C Culhane, Constantine S Mitsiades
ABSTRACT

Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Estradiol, BioReagent, powder, suitable for cell culture
Sigma-Aldrich
SB 202190, ≥98% (HPLC)
Sigma-Aldrich
Y-27632 dihydrochloride, ≥98% (HPLC)
Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder