Skip to Content
Merck
CN
  • Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population.

Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population.

Journal of nanobiotechnology (2021-02-28)
Youssef Abdalla, Meihua Luo, Ermei Mäkilä, Bryan W Day, Nicolas H Voelcker, Wing Yin Tong
ABSTRACT

Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells' (WK1) migration across small perforations (3 μm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 μm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs' cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Paraformaldehyde, reagent grade, crystalline
Sigma-Aldrich
MES hydrate, ≥99.5% (titration)
Sigma-Aldrich
N-Hydroxysulfosuccinimide sodium salt, ≥98% (HPLC)
Sigma-Aldrich
holo-Transferrin human, ≥98%
Sigma-Aldrich
Niflumic acid
Sigma-Aldrich
bisBenzimide H 33342 trihydrochloride, ≥98% (HPLC and TLC)
Corning® Transwell® polycarbonate membrane cell culture inserts, 6.5 mm Transwell with 8.0 μm pore polycarbonate membrane insert, TC-treated, w/lid, sterile, 48/cs
Corning® Transwell® polyester membrane cell culture inserts, 6.5 mm Transwell with 3.0 μm pore polyester membrane insert, TC-treated, sterile, 48/cs