Skip to Content
Merck
CN
  • Preferential retention of algal carbon in benthic invertebrates: Stable isotope and fatty acid evidence from an outdoor flume experiment.

Preferential retention of algal carbon in benthic invertebrates: Stable isotope and fatty acid evidence from an outdoor flume experiment.

Freshwater biology (2020-07-03)
Thomas Kühmayer, Fen Guo, Nadine Ebm, Tom J Battin, Michael T Brett, Stuart E Bunn, Brian Fry, Martin J Kainz
ABSTRACT

According to the River Continuum Concept, headwater streams are richer in allochthonous (e.g. terrestrial leaves) than autochthonous (e.g. algae) sources of organic matter for consumers. However, compared to algae, leaf litter is of lower food quality, particularly ω-3 polyunsaturated fatty acids (n-3 PUFA), and would constrain the somatic growth, maintenance, and reproduction of stream invertebrates. It may be thus assumed that shredders, such as Gammarus, receive lower quality diets than grazers, e.g. Ecdyonurus, that typically feed on algae.The objective of this study was to assess the provision of dietary PUFA from leaf litter and algae to the shredder Gammarus and the grazer Ecdyonurus. Three different diets (algae, terrestrial leaves, and an algae-leaf litter mix) were supplied to these macroinvertebrates in a flume experiment for 2 weeks. To differentiate how diet sources were retained in these consumers, algae were isotopically labelled with 13C.Both consumers became enriched with 13C in all treatments, demonstrating that both assimilated algae. For Gammarus, n-3 PUFA increased, whereas n-6 PUFA stayed constant. By contrast, the n-3 PUFA content of Ecdyonurus decreased as a consequence of declining algal supply.Results from compound-specific stable isotope analysis provided evidence that the long-chain n-3 PUFA eicosapentaenoic acid (EPA) in both consumers was more enriched in 13C than the short-chain n-3 PUFA α-linolenic acid, suggesting that EPA was taken up directly from algae and not from heterotrophic biofilms on leaf litter. Both consumers depended on algae as their carbon and EPA source and retained their EPA from high-quality algae.

MATERIALS
Product Number
Brand
Product Description

Supelco
Bacterial Acid Methyl Ester (BAME) Mix, solution (10 mg/mL total concentration in methyl caproate), analytical standard