- The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization.
The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization.
The aim of this study was to characterize the erythrocyte of the lamprey (Lampetra fluviatilis), a primitive vertebrate. The lamprey erythrocyte predominantly has a non-axisymmetric stomatocytelike shape. It has a nucleus and a haemoglobin-filled cytosol with a few organelles and vesicular structures. Surprisingly, there is no marginal band of microtubules. Sodium dodecylsulphate polyacrylamide gel electrophoresis followed by Coomassie blue staining of isolated plasma membranes revealed a single band at the level of the human spectrin doublet. Major bands also occurred at approximately 175 kDa and comigrating with human erythrocyte actin (approximately 45 kDa). The presence of spectrin, actin and vimentin was shown by immunoblotting. Band 3 protein, the anion exchanger in higher vertebrates, seemed to be highly deficient or lacking, as was also the case with ankyrin. Confocal laser scanning microscopy combined with immunocytochemical methods showed spectrin, actin and vimentin mainly to be localized around the nucleus, from where actin- and vimentin-strands extended out into the cytoplasm. Actin also seemed to be present at the plasma membrane. Phospholipid analyses of plasma membrane preparations showed the presence of the same four major phospholipid groups as in the human erythrocyte, although with higher and lower amounts of phosphatidylcholine and sphingomyelin, respectively. The low fluorescein isothiocyanate conjugated annexin V binding, as monitored by flow cytometry, indicated that phosphatidylserine is mainly confined to the inner membrane leaflet in the lamprey erythrocyte plasma membrane.