Skip to Content
Merck
CN
  • mu-Calpain and calpain-3 are not autolyzed with exhaustive exercise in humans.

mu-Calpain and calpain-3 are not autolyzed with exhaustive exercise in humans.

American journal of physiology. Cell physiology (2005-08-19)
Robyn M Murphy, Rodney J Snow, Graham D Lamb
ABSTRACT

mu-Calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that mu-calpain becomes proteolytically active in the presence of 2-200 microM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+ concentration levels ([Ca2+]i; approximately 1 microM) than the levels at which mu-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 microM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for mu-calpain, and both calpains displayed a seemingly higher Ca2+ sensitivity in human than in rat muscle homogenates, with approximately 15% autolysis observed after 1-min exposure to 2.5 microM Ca2+ in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]i level in rat muscle. During muscle activity, [Ca2+]i may transiently peak in the range found to autolyze mu-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s "all-out" cycling, n = 8; and 70% VO2 peak until fatigue, n = 3) on the amount of autolyzed mu-calpain or calpain-3 in human muscle. No significant autolysis of mu-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]i that occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-μ-Calpain, Large Subunit antibody produced in mouse, clone 15C10, purified immunoglobulin