Skip to Content
Merck
CN
  • AGE-RAGE Axis Stimulates Oxidized LDL Uptake into Macrophages through Cyclin-Dependent Kinase 5-CD36 Pathway via Oxidative Stress Generation.

AGE-RAGE Axis Stimulates Oxidized LDL Uptake into Macrophages through Cyclin-Dependent Kinase 5-CD36 Pathway via Oxidative Stress Generation.

International journal of molecular sciences (2020-12-10)
Hironori Yashima, Michishige Terasaki, Ami Sotokawauchi, Takanori Matsui, Yusaku Mori, Tomomi Saito, Naoya Osaka, Hideki Kushima, Munenori Hiromura, Makoto Ohara, Tomoyasu Fukui, Sho-Ichi Yamagishi
ABSTRACT

Advanced glycation end products (AGEs) are localized in macrophage-derived foam cells within atherosclerotic lesions, which could be associated with the increased risk of atherosclerotic cardiovascular disease under diabetic conditions. Although foam cell formation of macrophages has been shown to be enhanced by AGEs, the underlying molecular mechanism remains unclear. Since cyclin-dependent kinase 5 (Cdk5) is reported to modulate inflammatory responses in macrophages, we investigated whether Cdk5 could be involved in AGE-induced CD36 gene expression and foam cell formation of macrophages. AGEs significantly increased Dil-oxidized low-density lipoprotein (ox-LDL) uptake, and Cdk5 and CD36 gene expression in U937 human macrophages, all of which were inhibited by DNA aptamer raised against RAGE (RAGE-aptamer). Cdk5 and CD36 gene expression levels were correlated with each other. An antioxidant, N-acetyl-l-cysteine, mimicked the effects of RAGE-aptamer on AGE-exposed U937 cells. A selective inhibitor of Cdk5, (R)-DRF053, attenuated the AGE-induced Dil-ox-LDL uptake and CD36 gene expression, whereas anti-CD36 antibody inhibited the Dil-ox-LDL uptake but not Cdk5 gene expression. The present study suggests that AGEs may stimulate ox-LDL uptake into macrophages through the Cdk5-CD36 pathway via RAGE-mediated oxidative stress.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
D-(+)-Glyceraldehyde, ≥98.0% (HPLC)