Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN
  • Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress.

Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress.

Tree physiology (2020-02-23)
Xinyi Huang, Raju Y Soolanayakanahally, Robert D Guy, Arun S K Shunmugam, Shawn D Mansfield
ABSTRACT

Globally, soil salinization is becoming increasingly prevalent, due to local hydrogeologic phenomena, climate change and anthropogenic activities. This has significantly curtailed current world food production and limits future production potential. In the prairie region of North America, sulfate salts, rather than sodium chloride, are often the predominant cause of soil degradation. In order to amend soil quality, revegetate salt-affected sites and recover economic loss associated with soil salinization, the establishment of short-rotation coppice plantations with willows (Salix spp.) has been suggested as a possible solution. To screen for the best candidates for such an application, 20 hybrid and 16 native willow genotypes were treated with three different salt conditions for 3 months. The treatments were designed to reflect the salt composition and concentrations on North American prairies. Under moderate salinity treatment (7 dS m-1), hybrid willows had better growth, as they established quickly while managing salt transport and mineral nutrition balance. However, native willows showed higher potential for long-term survival under severe salinity treatment (14 dS m-1), showing a lower sodium:potassium ratio in roots and better photosynthetic performance. Two native willow genotypes with high osmotic and salinity tolerance indices, specifically LAR-10 and MJW-9, are expected to show superior potential for remediating salt-affected sites. In addition, we observed significantly higher sulfate/sulfur concentrations in both leaf and root tissues in response to the severe salinity treatment, shedding light on the effect of sulfate salinity on sulfate uptake, and potentially sulfur metabolism in plants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Amyloglucosidase from Aspergillus niger, ammonium sulfate suspension, ≥40 units/mg protein
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
100 μL
Estimated to ship on April 21, 2025
Details...
CN¥5,294.29
0.2 mL
Please contact Customer Service for Availability
CN¥7,940.75
Sigma-Aldrich
α-Amylase from Bacillus licheniformis, Type XII-A, saline solution, ≥500 units/mg protein (biuret)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
100 μL
Estimated to ship on April 21, 2025
Details...
CN¥5,294.29
0.2 mL
Please contact Customer Service for Availability
CN¥7,940.75