Skip to Content
Merck
CN
  • Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons.

Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons.

Human molecular genetics (2020-08-15)
George Andrew S Inglis, Ying Zhou, Dillon G Patterson, Christopher D Scharer, Yanfei Han, Jeremy M Boss, Zhexing Wen, Andrew Escayg
ABSTRACT

GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GABA antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Nkx2.1 Antibody, clone 8G7-G3-1, ascites fluid, clone 8G7-G3-1, Chemicon®
Sigma-Aldrich
Purmorphamine, ≥98% (HPLC)