- Early life stress from allergic dermatitis causes depressive-like behaviors in adolescent male mice through neuroinflammatory priming.
Early life stress from allergic dermatitis causes depressive-like behaviors in adolescent male mice through neuroinflammatory priming.
Allergic dermatitis (AD), associated with pruritus and itchiness, is one of the major stressful conditions early in life. AD also influences the incidence of neuropsychiatric disorders and developmental disorders through neuro-immune interactions. To the best of our knowledge, there is no report that assesses the effects of early childhood dermatitis on psychiatric disorders later in life using an animal model. Here, we developed an oxazolone (Ox)-induced AD model in the early life of male C57BL/6J mice whose ears were challenged by Ox repeatedly from postnatal days (PD) 2 to PD30. On PD30, the Ox-treated ears were remarkably thickened and showed epidermal hyperplasia coupled with increased expression of T helper 2 cytokines, interleukin (IL)-4, and IL-13 in the ear tissue. Additionally, serum immunoglobulin E levels and serum corticosterone levels were higher in the Ox-treated mice than those in the control mice. Although Ox-treated PD40 mice showed neither behavioral abnormalities nor increases in pro-inflammatory cytokine expression in the brain, this study revealed that they experienced downregulation of CD200R1 expression in the amygdala under basal conditions and that additional lipopolysaccharide (LPS) administration induced enhanced neuroinflammatory reaction as the priming effect was accompanied by an increase of Iba-1-positive microglia in the amygdala and hippocampus. Furthermore, the Ox-treated PD40 mice showed depressive-like behaviors 24 h after LPS administration, whereas the control mice did not. Interestingly, the expression of indoleamine 2,3-dioxygenase and kynurenine 3-monooxygenase, key rate-limiting enzymes of the kynurenine metabolism pathway, was upregulated in the hippocampus, prefrontal cortex, and amygdala of the Ox-treated mice 4 h after LPS administration. Based on these results, we suggest that early life stress from AD aggravates susceptibility to systemic inflammation in the adolescent brain, leading to depressive behaviors with abnormal kynurenine metabolism.