Skip to Content
Merck
CN
  • Association of host proteins with the broad host range filamentous phage NgoΦ6 of Neisseria gonorrhoeae.

Association of host proteins with the broad host range filamentous phage NgoΦ6 of Neisseria gonorrhoeae.

PloS one (2020-10-16)
A Piekarowicz, A Kłyż, M Adamczyk-Popławska, D C Stein
ABSTRACT

All Neisseria gonorrhoeae strains contain multiple copies of integrated filamentous phage genomes with undefined structures. In this study, we sought to characterize the capsid proteins of filamentous N. gonorrhoeae bacteriophage NgoΦ6 and phagemids propagated in different bacteria. The data demonstrate that purified phage contain phage-encoded structural proteins and bacterial host proteins; host proteins consistently copurified with the phage particles. The bacterial host proteins associated with the phage filament (as identified by mass spectrometry) tended to be one of the predominant outer membrane components of the host strain, plus minor additional host proteins. We were able to copurify a functional ß-lactamase, a phagemid-encoded protein, with phage filaments. We used protein modeling and immunological analysis to identify the major phage encoded structural proteins. The antigenic properties of these proteins depended on the bacterium where the phages were propagated. Polyclonal antibodies against N. gonorrhoeae phage NgoΦ6 recognized phage-encoded proteins if the phage was propagated in N. gonorrhoeae or H. influenzae cells but not if it was propagated in Salmonella or E. coli. We show that the phage filaments isolated from gonococci and Haemophilus are glycosylated, and this may explain the antigenic diversity seen. Taken en toto, the data demonstrate that while the neisserial filamentous phage are similar to other Inovirus with respect to overall genomic organization, their ability to closely associate with host proteins suggests that they have unique surface properties and are secreted by a here-to-fore unknown secretory pathway.

MATERIALS
Product Number
Brand
Product Description

Millipore
Nitrocefin disks, suitable for microbiology