Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 11 at 9:00 PM CDT and Saturday, Apr 12 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

Merck
CN
  • Blocking ACAT-1 Activity for Tumor Therapy with Fluorescent Hyperstar Polymer-Encapsulated Avasimible.

Blocking ACAT-1 Activity for Tumor Therapy with Fluorescent Hyperstar Polymer-Encapsulated Avasimible.

Macromolecular bioscience (2020-05-15)
Ting Bai, Bobo Zhu, Dongyan Shao, Ziyang Lian, Pei Liu, Junling Shi, Jie Kong
ABSTRACT

Targeting the distinct cholesterol metabolism of tumor cells is proposed as a novel way to treat tumors. Blocking acyl-CoA cholesterol acyltransferase-1 (ACAT-1) by the inhibitor avasimible (Ava), which elevates intracellular free cholesterol levels, is shown to effectively induce apoptosis. However, Ava faces disadvantages of poor water solubility, a short half-life, and no capability for fluorescence detection, which have greatly limited its application. Herein, a fluorescent hyperstar polymer (FHSP) is developed to encapsulate Ava to improve its ability to inhibit HeLa cells and K562 cells. The results of this study show that the obtained Ava-FHSP micelles possess a high drug loading capacity of 22.7% and bright green fluorescence. Ava and Ava-FHSP are cytotoxic to both HeLa and K562 cells and cause reductions in cell size, nuclear lysis, and chromatin condensation and hindered proliferation of both cell types by causing S phase cell cycle arrest. Further mechanistic analysis indicates that Ava-FHSP reduces the protein and messenger RNA expression of ACAT-1 and significantly increases intracellular free cholesterol levels, which can increase endoplasmic reticulum stress and finally cause cell apoptosis. All these results suggest that this fluorescent hyperstar polymer represents a potential therapeutic tumor strategy by changing the cholesterol metabolism of tumor cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,3-Dibromomaleimide, 97%
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
25 μg
Estimated to ship on April 14, 2025
Details...
CN¥3,396.67